mTOR is essential for corticosteroid effects on hippocampal AMPA receptor function and fear memory.

نویسندگان

  • Hui Xiong
  • Frédéric Cassé
  • Yang Zhou
  • Ming Zhou
  • Zhi-Qi Xiong
  • Marian Joëls
  • Stéphane Martin
  • Harm J Krugers
چکیده

Glucocorticoid hormones, via activation of their receptors, promote memory consolidation, but the exact underlying mechanisms remain elusive. We examined how corticosterone regulates AMPA receptors (AMPARs), which are crucial for synaptic plasticity and memory formation. Combining a live imaging fluorescent recovery after photobleaching approach with the use of the pH-sensitive GFP-AMPAR tagging revealed that corticosterone enhances the AMPAR mobile fraction and increases synaptic trapping of AMPARs in hippocampal cells. In parallel, corticosterone-enhanced AMPAR-mediated synaptic transmission. Blocking the mammalian target of rapamycin (mTOR) pathway prevented the effects of corticosterone on both AMPAR trapping-but not on the mobile fraction-and synaptic transmission. Blocking the mTOR pathway also prevented the memory enhancing effects of corticosterone in a contextual fear-conditioning paradigm. We conclude that activation of the mTOR pathway is essential for the effects of corticosterone on synaptic trapping of AMPARs and, possibly as a consequence, fearful memory formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of hippocampal (CA1) NMDA receptor on learning and memory in presence and absence of zinc chloride in adult male rats

Introduction: Zinc is an essential trace element that plays an important role in synaptic plasticity and modulating the activity of CNS and involve in learning and memory. Synaptic vesicle zinc in the hippocampus area exerting modulatory effects on NMDA glutamate receptor. Method: In this experiment the effects of NMDA agonist and antagonist administration intra hippocampus on passive avoidan...

متن کامل

Protective effect of crocin on bisphenol A - induced spatial learning and memory impairment in adult male rats: Role of oxidative stress and AMPA receptor

Objective(s): Bisphenol A (BPA), a xenoestrogenic endocrine disrupting agent, is widely used in the production of polycarbonate plastics and has potential adverse effects on the developing nervous system, memory and learning abilities. The protective effect of the crocin, an important active constituent in Crocus sativus L, on memory impairment induced by BPA in rat wa...

متن کامل

The Role of Hippocampal 5HT3 Receptors in Harmaline-Induced Memory Deficit

Introduction: The plethora of studies indicated that there is a cross talk relationship between harmaline and serotonergic (5-HT) system on cognitive and non-cognitive behaviors. Thus, the purpose of this study is to assess the effects of hippocampal 5-HT4 receptor on memory acquisition deficit induced by harmaline.  Methods: Harmaline was injected peritoneally, while 5-HT4 receptor ago...

متن کامل

AMPA receptors control fear extinction through an Arc-dependent mechanism.

Activity-regulated cytoskeleton-associated protein (Arc) supports fear memory through synaptic plasticity events requiring actin cytoskeleton rearrangements. We have previously shown that reducing hippocampal Arc levels through antisense knockdown leads to the premature extinction of contextual fear. Here we show that the AMPA receptor antagonist CNQX elevates hippocampal Arc levels during exti...

متن کامل

Corticosterone Slowly Enhances Miniature Excitatory Postsynaptic Current Amplitude in Rat Ca1 Hippocampal Cells

Corticosteroid hormones are released in high amounts after stress and bind to intracellular receptors in the brain, which in activated form function as transcription factors. We here tested the effect of a high dose of corticosterone on AMPA receptor mediated transmission in the CA1 hippocampal area, which is enriched in corticosteroid receptors. To focus on slow gene-mediated effects of the ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Learning & memory

دوره 22 12  شماره 

صفحات  -

تاریخ انتشار 2015